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The single-scattering properties of randomly oriented triaxial ellipsoids with size parameters from the
Rayleigh to geometric-optics regimes are investigated. A combination of the discrete dipole approxima-
tion (DDA) technique and an improved geometric optics method (IGOM) is applied to the computation
of ellipsoidal particle scattering properties for a complete range of size parameters. Edge effect con-
tributions to the extinction and absorption efficiencies are included in the present IGOM simulation.
It is found that the extinction efficiency, single-scattering albedo, and asymmetry factor computed from
the DDA method for small size parameters smoothly transition to those computed from the IGOM
for moderate-to-large size parameters. The phase matrix elements computed from these two methods
are also quite similar when size parameters are larger than 30. Thus, the optical properties of ellipsoidal
particles can be computed by combing the DDA and the IGOM for small-to-large size parameters.
Furthermore, we also examine the applicability of the ellipsoid model to the simulation of the scatter-
ing properties of realistic aerosol particles by comparing the theoretical and experimental results for
feldspar aerosols. It is shown that the ellipsoid model is better than the commonly used spheroid model
for simulating dust particle optical properties, particularly, their polarization characteristics, realisti-
cally. © 2008 Optical Society of America

OCIS codes: 290.0290, 080.0080, 260.0260, 010.0010.

1. Introduction

The nonsphericity of airborne dustlike particles has
been widely recognized as an important factor in re-
mote sensing of the optical andmicrophysical proper-
ties of these particles. Especially, it has been shown
that neglecting the nonsphericity of aerosol particles
may lead to large errors in aerosol property retrieval
[1–4]. The scanning electron microscope (SEM)
images of some sampled aerosol particles [5] show
that the morphologies of these irregular particles
are very complicated. Specifically, these particles

have small-scale structures but lack well-defined
overall shapes. In numerical modeling of the optical
properties of dust particles, it is unrealistic to ac-
count for the morphological details of these particles.
The application of simple geometries to complex par-
ticle optical property simulation has been discussed
by Macke and Mishchenko [6] and Kahnert et al. [7].
To account for the nonsphericity in many previous
studies reported in the literature, rounded dust
particles (for example, Saharan dust) are usually
assumed to be spheroids (i.e., ellipsoids of revolution)
as a first-order approximation for the overall shapes
of these particles [8–11], although somemore compli-
cated particle geometries have also been considered
(e.g., [12,13]). Realistic dust aerosols are almost
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exclusively irregular particles without any particu-
lar symmetry. It is shown that retrieving mineral
aerosol particle complex refractive index based on
the spheroidal model from measured scattering ma-
trices [5] always overestimates the imaginary part.
To match theoretical simulations with measure-
ments, one has to use nonphysical complex refractive
indices and shape distributions [14].
It requires one degree of freedom (i.e., particle size)

to specify the geometry of a spherical particle,
whereas two degrees of freedom (the particle maxi-
mum dimension and aspect ratio) are needed to spe-
cify the geometry of a spheroidal particle. The
dimensions of an ellipsoid along three orthogonal
axes may be different. Thus, ellipsoid geometry
has one more degree of freedom than the com-
monly-used spheroid geometry, and the former is a
better approximation to the shapes of realistic dust
particles. Ghobrial and Sharief [15] estimated that
the aspect ratios of the three axes (hereafter,
indicated by a, b, and c) of sandstorm particles are
approximately c∶b ¼ 1∶0:71 and b∶a ¼ 0:71∶0:53.
For simplicity, in the following discussions the two
aspect ratios, c∶b ¼ 1∶0:71 and b∶a ¼ 0:71∶0:53,
are indicated in a concise form given by c∶b∶a ¼
1∶0:71∶0:53.
In this paper we investigate the single-scattering

properties of dielectric and homogeneous ellipsoidal
particles for a complete size parameter spectrum.
The analytical solution to the scattering of light by
an ellipsoid has been partially solved [16–18]. How-
ever, the analytical solution is computationally
stable only in the case of quite small particles. To
compute the single-scattering properties of ellipsoids
with size parameters required for practical remote
sensing applications, numerical methods, such as
the T-matrix [19–21], discrete dipole approximation
(DDA) [22,23], finite-difference time domain (FDTD)
[24,25], and pseudospectral time domain (PSTD)
methods [26,27] can be used for small to moderate
size parameters. For large particles, approximate ap-
proaches such as the anomalous diffraction theory
[28] and the so-called physical optics approximation
method [29] have been applied to arbitrarily oriented
ellipsoids. However, in both the approximate meth-
ods, only the angular patterns of the scattered light
associated with oriented ellipsoids have been stu-
died. For many practical applications involved in at-
mospheric radiative transfer simulation and remote
sensing, it is necessary to compute the full scattering
matrix, extinction efficiency, and single-scattering al-
bedo of randomly oriented particles. In this study, we
employ the improved geometric optics method
(IGOM) developed by Yang and Liou [30], and a
DDA code (ADDA 0.77) developed by Yurkin and
Hoekstra [23] to compute a complete set of optical
properties for large and small ellipsoidal particles,
respectively.
In the computation of the extinction and absorp-

tion efficiencies, the IGOM, which only considers re-
flection, refraction, and diffraction, underestimates

the values of the aforementioned optical quantities
because the edge effect is neglected. The edge effect
contribution to the extinction efficiency has been ex-
tensively discussed in the cases of spheres, spher-
oids, and cylinders [31–35]. Baran and Havemann
[36] and Mitchell et al. [37] studied the edge effect
contributions to the absorption and extinction effi-
ciencies of hexagonal ice crystals, respectively.
Furthermore, Mitchell et al. [38] have incorporated
the edge effects (or, photon tunneling, a term used
in their study) into a modified anomalous diffraction
approximation to compute the absorption and extinc-
tion coefficients of water and ice clouds. Because it is
quite difficult to obtain an analytical expression for
the edge effect contribution in the case of ellipsoids,
in this paper we develop an efficient numerical meth-
od to compute the edge effect contribution for the
scattering of light by randomly oriented ellipsoids.
For the absorption efficiency, we develop a semiem-
pirical method to incorporate so-called above- and
below-edge contributions, following Nussenzveig
and Wiscombe [39–41], who applied the complex
angular momentum (CAM) theory to the scattering
of light by spheres (or spherical well potentials in
quantum physics).

This paper is organized as follows: Section 2 is a
brief introduction to the DDA method. Section 3 pre-
sents the theory of the IGOM, which contains the de-
scription of geometry, the ray-tracing technique, and
the treatment of diffraction. The edge effect contribu-
tions to the extinction and absorption efficiencies are
discussed in Section 4. In Section 5, we present the
single-scattering properties of ellipsoids and com-
pare the theoretical simulations and measurements
of the phase matrices for feldspar aerosol particles.
Finally, the conclusions of this study are given in
Section 6.

2. DDA Method

DDA is one of several popular numerical methods for
computing the scattering properties of an arbitrarily
shaped particle with a small/moderate size para-
meter [42]. In DDA, an irregular particle is discre-
tized into an array of small volumes. Each small
volume is approximated as an electric dipole [43].
When an electromagnetic wave is incident on the
particle, each dipole oscillates in response to the in-
cident field and the induced field associated with all
other dipoles. Mathematically, the basic DDA
equation is in the form of

~Einc
i ¼ α−1i ~Pi −

X
j≠i

Gij
~Pj; ð1Þ

where ~Einc
i is the incident electric field, ~Pi is the po-

larizaton of each dipole, αi is the polarizability, and
Gij is the discretized Green’s function. When a self-
consistent solution to the DDA equation is obtained,
it is straightforward to calculate the scattering prop-
erties of the particle on the basis of a volume-integral
electromagnetic relation that maps the near-field to
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the far-field [44]. The formulation of the DDA equa-
tion as derived from the basic volume integral equa-
tion can also be found in [45]. Various numerical
aspects of this method, such as iterative methods
and convergence analysis, have been recently re-
viewed by Yurkin and Hoekstra [46]. Note that the
DDAmethod has been extensively employed by other
researchers (e.g., [13,47]) to investigate the optical
properties of dust particles.

3. IGOM

The IGOM is a hybrid algorithm based on the prin-
ciples of geometric optics and electromagnetic wave
theory [30]. Specifically, this method employs the
ray-tracing technique to compute the near-field on
the scattering particle surface. The corresponding
far-field is obtained by mapping the near-field to
its counterpart in the radiation zone on the basis
of electromagetic wave theory. The basic formulation
of the IGOM can be found in Yang and Liou [30]. To
increase the computational efficiency of the IGOM,
the Monte Carlo method [48] is applied to the ray-
tracing technique and a simplified algorithm is used
to account for the ray-spreading effect associated
with mapping the near-field to the far-field.

A. Geometry

Figure 1 shows the geometry of an ellipsoid and the
configurations of two coordinate systems. The geo-
metry of an ellipsoid centered at the origin can be
completely described by its surface equation in the
Cartesian coordinate system oxyz as follows:

x2

a2 þ
y2

b2
þ z2

c2
¼ 1; ð2Þ

where a, b, and c are principal radii (or semi axes)
along three orthogonal directions. When any two of
them, say a and b, are the same, the ellipsoid reduces
to a spheroid. The oxyz coordinate system is usually
called the particle coordinate system, distinguished
from the incident ray coordinate system ox0y0z0 used

for specifying the scattering angle and the scattering
plane. In this study, the direction of the incident ray
is along oz0, and the directions of parallel and perpen-
dicular polarizations are specified along the x0 and y0
axes, respectively. The coordinate transformation
from ox0y0z0 to oxyz is given by

0
B@
x

y

z

1
CA¼

0
B@

sinβ −cosβ 0

cosβ sinβ 0

0 0 1

1
CA
0
B@
1 0 0

0 cosθ sinθ
0 −sinθ cosθ

1
CA

0
B@
x0

y0

z0

1
CA¼

0
B@

sinβ −cosθ cosβ −sinθ cosβ
cosβ cosθ sinβ sinθ sinβ
0 −sinθ cosθ

1
CA
0
B@
x0

y0

z0

1
CA; ð3Þ

where θ and β are two angles that specify the direc-
tion of the incident ray in the particle coordinate
system. In the incident ray coordinate system, the
surface equation of the ellipsoid is given by

Dz0 ¼ −E� abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − ðAx02 þ By02 þ Cx0y0Þ

q
; ð4Þ

where

A ¼ ða2
− b2Þcos2θcos2β þ b2cos2θ þ c2sin2θ;

B ¼ a2sin2β þ b2cos2β;
C ¼ ða2

− b2Þ sinð2βÞ cos θ;
D ¼ c2sin2θða2sin2β þ b2cos2βÞ þ a2b2cos2θ;
E ¼ ða2

− b2Þc2 sin β cos β sin θx0

þ ½a2ðc2 − b2Þ þ c2ðb2 − a2Þcos2β� sin θ cos θy0:

The plus and minus signs in Eq. (4) describe the il-
luminated and nonilluminated sides, respectively.
The edge (or shadow boundary) that connects the il-
luminated and nonilluminated sides is determined
by the following equation:

Ax02 þ By02 þ Cx0y0 ¼ D; z0 ¼ −E=D: ð5Þ

It can be shown that the interface of the illuminated
and nonilluminated sides is an ellipse, and its semi
axes are

�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1 − tan2 ωÞ
A − B tan2 ω

s
; ð6Þ

�b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1 − tan2 ωÞ
B − A tan2 ω

s
; ð7Þ

where ω is given by
Fig. 1. Geometry of a non-axially-symmetric ellipsoid in oxyz and
ox0y0z0 coordinate systems.
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ω ¼ 1
2
arctan

C
B − A

: ð8Þ

Note that the plane containing the ellipse is not
perpendicular to the direction of the incident light,
and ω is zero for spheroids, i.e., when a is equal to
b. It can be proved that the projected area is

S ¼ π�a�b ¼ π
ffiffiffiffi
D

p
: ð9Þ

Employing the following transformation:

x0 ¼ cosω�x0 þ sinω�y0; ð10Þ

y0 ¼ − sinω�x0 þ cosω�y0; ð11Þ
which means the rotation from o − x0y0 to o − �x�y by an
angle ω, we obtain a similar ellipse equation for the
projection of the particle onto the ox0y0 plane, given
by

�x02

�a2 þ �y02
�b2

¼ 1: ð12Þ

The preceding ellipsoid geometry description in both
the particle coordinate system and the incident coor-
dinate system is quite useful in the ray-tracing, dif-
fraction, and edge effect calculations. Similar results
can be found in [28], where the differences in formula
are due to different coordinate conventions and defi-
nitions of the Euler angles.

B. Ray Tracing

The basic principle of the IGOM is to calculate the
electromagnetic field on the surface of the ellipsoid
by using the ray-tracing technique, as illustrated
in Fig. 2. The corresponding far-field is obtained
by mapping the near-field to its counterpart in the
radiation (or, far-field) zone. The magnitude and
phase of each ray is calculated based on the localized-
plane-wave approximation by using the Fresnel for-
mulas. The directions of external reflection, internal
reflection, and refraction are determined by Snell’s
law. The first step for the ray-tracing calculation is
to initialize the incident rays and determine the
intersection points. The intersection points of the
incident rays with the particle are determined by
the Monte Carlo method in the incident coordinate
system as follows:

x0 ¼ �a
ffiffiffi
ξ

p
cosω cosð2πχÞ þ �b

ffiffiffi
ξ

p
sinω sinð2πχÞ; ð13Þ

y0 ¼ −�a
ffiffiffi
ξ

p
sinω cosð2πχÞ þ �b

ffiffiffi
ξ

p
cosω sinð2πχÞ; ð14Þ

z0 ¼ ½−E − abc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D − ðAx02 þ By02 þ Cx0y0Þ

q
�=D; ð15Þ

where ξ and χ are two random numbers with a uni-
form probability distribution between 0 and 1. The
ray-tracing process is carried out in the particle sys-
tem, in which the incident point coordinates are ob-
tained by the coordinate transformation given by
Eq. (3). According to Snell’s law, the surface normal
direction n̂ at the incident point ðx1; y1; z1Þ is needed
to determine the reflection and refraction directions.
Given the surface Eq. (2), we have

n̂ ¼ ðx1=a2; y1=b2; z1=c2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21=a

4 þ y21=b
4 þ z21=c

4
q

:

ð16Þ

Given the initial point ðx1; y1; z1Þ on the surface
and direction of the ray within the particle, the
ray-tracing process requires the next intersection
point ðx2; y2; z2Þ, which can be determined by

ðx2; y2; z2Þ ¼ ðx1; y1; z1Þ þ dðv1; v2; v3Þ; ð17Þ

d ¼ −
2x1v1=a2 þ 2y1v2=b2 þ 2z1v3=c2

v21=a
2 þ v22=b

2 þ v23=c
2 ; ð18Þ

where d is the length of the internal ray and
ðv1; v2; v3Þ is the unit vector of its direction. Using
Eqs. [16–18], Snell’s law, and the Fresnel formulas,
the ray-tracing calculation can be carried out until
the energy associated with the ray of interest is
effectively negligible (say, 10−5). The technical details
associated with the electromagnetic field computa-
tion in the ray-tracing technique can be found in
Yang and Liou [30].

Fig. 2. Schematic geometry for the ray-tracing calculations
involving a triaxial ellipsoid.
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C. Diffraction

In addition to the contributions from the reflected
and refracted rays involved in the ray-tracing calcu-
lation, the diffraction of the incident wave also con-
tributes to the scattered energy. Using the surface
mapping technique, Yang and Liou [30] showed that
the amplitude scattering matrix for diffraction is
given as follows:

Adif ¼
k2

2π Is
� ðcos θs þ cos2θsÞ=2 0

0 ð1þ cos θsÞ=2
�
;

ð19Þ

Is ¼
Z Z

s
expð−ikr̂ ·~ξÞd2ξ; ð20Þ

where θs is the scattering angle, s is the projected
area, k is the wave number, and r̂ is a unit vector
pointing along the observational direction, as illu-
strated in Fig. 3. The explicit form of the integral
in Eq. (20) for an ellipse can be given in the form of

Is ¼ π�a�b 2J1ðk sin θs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 cos2 ϕþ �b2 sin2 ϕ

p
Þ

k sin θs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 cos2 ϕþ �b2 sin2 ϕ

p ; ð21Þ

where J1 is the first-order Bessel function, and ϕ is
the azimuthal angle, which specifies the scatter-
ing plane.

4. Edge Effect

When a plane wave is incident on a scattering parti-
cle with a smooth surface whose radius of curvature
is much larger than the incident wavelength, the
transition or penumbra region between illuminated

and nonilluminated sides of the particle leads to an
additional term. This term is known as the edge ef-
fect contribution to the scattering amplitude matrix
in the forward direction, which also contributes to
the extinction efficiency[35]. In principle, the IGOM
considers only the reflection, refraction, and diffrac-
tion of the incident light and neglects the nonzero
edge effect contribution. Note that by including the
edge effect contribution in the geometric optics
method, the extinction efficiency will converge to 2
asymptotically from above [33,35].

To quantitatively include the edge effect, Jones
[32] assumed that the neighborhood of a point on
the edge behaves locally like that associated with
a cylinder, and the edge effect contribution to the ex-
tinction efficiency of a convex particle for one certain
orientation can be given as follows:

Qe;edge ¼
c0

k2=3S

Z
RðsÞ1=3 sin1=3 αðsÞds; ð22Þ

where c0 is a universal constant, R is the radius of
curvature of the “profile” of the edge, S is the pro-
jected area, α is the angle between the incident direc-
tion and the tangent of the edge, and ds is the arc
length of the edge. In Jones’ treatment, the particle
is perfectly conducting. The extinction efficiency de-
rived from Eq. (22) in the case of a sphere is

Qe;edge ¼
2c0

ðkRÞ2=3 ; ð23Þ

2c0 ¼ cTM þ cTE ¼ 0:1322; ð24Þ
where k is the wavenumber and R is the radius, and
cTM and cTE are two coefficients corresponding to the
TM and TE waves. Jones’ result [32] is exactly the
same as the first correction to the geometric-optics
result obtained by Rubinow and Wu [49] from Mie
theory. For a transparent sphere, Nussenzveig and
Wiscombe [39] find that the first term due to the edge
effect has the same form as Eq. (23), but with
c0 ¼ 0:996193. Following Jones’ approach but with
c0 replaced by 0.996193, Fournier and Evans [33] ex-
plicitly derived a general formula for Qe;edge for the
case of spheroids. For spheroids, it can be shown that
α ¼ 0, i.e., the incident direction is always perpendi-
cular to the plane coinciding with the edge plane. For
triaxial ellipsoids, α is a function of the position on
the edge. It is difficult to obtain an analytical formula
for the edge effect in the case of triaxial ellipsoids be-
cause of the inherent mathematical complexity. How-
ever, we develop a numerical method to compute it
accurately, which is described in Appendix A. For
random orientations, the average of the edge effect
contribution to the extinction efficiency is given by

hQe;edgei ¼
R
1
0

R π=2
0 Qe;edgeD1=2dμdβR
1
0

R π=2
0 D1=2dμdβ

; ð25ÞFig. 3. Diffraction of an ellipsoid with an elliptic projection. Semi
axes �a and �b and rotation angle ω are defined in Eqs. (6)–(8).
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where μ ¼ cos θ; θ and β are the same angles as used
in Fig. 1. Because geometrical rays and the edge ef-
fect contribute independently to the amplitude scat-
tering matrix in the forward direction, the total
extinction efficiency is given by the sum of the IGOM
result and hQe;edgei as follows:

hQei ¼ hQe;IGOMi þ hQe;edgei; ð26Þ

where Qe;IGOM is calculated by the IGOM.
The edge effect contribution to the extinction effi-

ciency can also be understood as an additional “block-
ing” effect. In the framework of the interaction
between photons and a sphere, those photons with
impact parameters larger than the radius of the
sphere are able to penetrate the boundary. This pro-
cess is known as the above edge effect or “tunnelling”
effect, which is in principle a wave phenomenon.
When photons hit on the sphere within a fraction
ðkRÞ−2=3 of the full radius from the edge, a particular
interference (anomalous reflection due to centrifugal
barrier) occurs [35]. This phenomenon is called the
below-edge effect. This anomalous neighborhood
where the edge effect plays a role is termed an “edge
strip”, and has been estimated [41] (WKB approxi-
mation) as follows:

R0 ≤ r ≤ R0

�
1þ cþ

�
2

kR0

�
2=3

�
ðabove edgeÞ;

ð27Þ

R0

�
1 − c−

�
2

kR0

�
2=3

�
≤ r ≤ R0 ðbelow edgeÞ; ð28Þ

where R0 is the radius of sphere, and cþ and c− are
positive numerical constants of order unity. It is
straightforward to calculate the additional extinction
efficiency due to the edge effect. Specifically, after the
higher order term is omitted, the edge contribution is
22=3ðcþ þ c−Þ2=ðkR0Þ2=3, similar to Eq. (23).
Both the above-edge and below-edge effects contri-

bute to the absorption efficiency. Nussenzveig and
Wiscombe [39] showed that

Qa ¼ Qa;GOM þQa;a:e: þQa;b:e:; ð29Þ

where Qa;a:e: and Qa;b:e: are the so-called above-edge
and below-edge terms [39,40]. For nonspherical and
randomly oriented ellipsoids, the IGOM also under-
estimates the absorption efficiency. The reason is
that the above-edge and below-edge contributions
are neglected. Note that the below-edge contribution
is smaller than the above-edge effect. To incorporate
the above- and below-edge effects, we develop a semi-
empirical method. In this method, for each orienta-
tion of the ellipsoid, we expect the edge effect of
the ellipsoid is more or less the same as that of a
sphere, provided that they have the same “edge

strip” area. For a sphere, the “edge strip” area can
be computed as follows:

Asph ¼ 2ðcþ þ c−ÞπR4=3
0

�
2
k

�
2=3

: ð30Þ

For a general ellipsoid, the effective “edge strip” area
is

Aell ¼ ðcþ þ c−Þ
Z

R1=3

�
2
k

�
2=3

ds; ð31Þ

whereR is the radius of curvature of the profile of the
edge. Therefore, a sphere has the same “edge strip”
area as that of the ellipsoid for a certain orientation,
if the radius of the sphere is given by

R0 ¼
�R

R1=3ds
2π

�
3=4

: ð32Þ

The volume of the particle is another factor that in-
fluences the value of the absorption efficiency. If a
sphere of radius R0 is used for calculating the edge
effect contribution, the volume of the sphere should
be different from that of an ellipsoid. Therefore, we
introduce a correction factor as follows:

f c ¼
1 − expð−kmireÞ
1 − expð−kmiR0Þ

; ð33Þ

where re is the effective radius and mi is the imagin-
ary part of the refractive index. For an ellipsoid, re is
given as follows:

re ¼
2abc

a2 þ ba2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − a2

p
FðΩ; qÞ þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − a2

p
EðΩ; qÞ

;

ð34Þ

where

q ¼ c
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − a2

c2 − a2

s
; Ω ¼ arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=c2

q �
: ð35Þ

In Eq. (34), F½Ω; q� and E½Ω; q� are incomplete ellipti-
cal functions [50], given by

F½Ω; q� ¼
Z Ω

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2sin2t

p ;

E½Ω; q� ¼
Z Ω

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2sin2t

q
dt:

ð36Þ

It is evident from the preceding discussions that the
absorption efficiency with corrected terms can be
expressed as follows:
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Qaða; b; c; k;mÞ ¼ Qa;IGOMða; b; c; k;mÞ þ
R
1
0

R π=2
0 ðQa;a:e:½R0ðμ; βÞ; k;m� þQa;b:e:½R0ðμ; βÞ; k;m�Þf cR2

0dμdβR
1
0

R π=2
0 D1=2dμdβ

: ð37Þ

It should be pointed out that we assumed a < b < c
in Eq. (34); otherwise, we need to reorder a, b, and c
so that the Eq. (34) is correctly used. In this study we
use the computer code developed by Nussenzveig and
Wiscombe [39] to compute Qa;a:e:ðR0; k;mÞ
and Qa;b:e:ðR0; k;mÞ.

5. Results and Discussions

A. Integrated Scattering Properties

Figure 4(a) shows the extinction efficiency, absorp-
tion efficiency, single-scattering albedo, and asym-
metry factor of randomly oriented ellipsoids at
0:66 μm wavelength. The refractive index is 1:53þ
i0:008 based on Levoni et al. [51]. The axis ratios
are assumed to be a∶b∶c ¼ 0:53∶0:71∶1. The size
parameter is defined in terms of the radius of equiva-
lent volume spheres. The ADDA code is employed for
size parameters ranging from 0.5 to 30. The IGOM
code with the inclusion of the edge effect is applied
to a size parameter region from 15 to 1000. Agree-
ment is shown for size parameters between 15 and
30, which means that the IGOM is successfully ex-
tended to the small size parameter region (∼15) by

adding the missing physics (i.e., the edge effect con-
tributions). Additionally, the absorption efficiency for
size parameters from the Rayleigh to geometric-
optics regimes can also be effectively computed in
the context of a combination of the DDA method,
IGOM, and edge effect contributions. Figure 4(b) is
similar to Fig. 4(a), except that the aspect ratios
for Fig. 4(b) are 0:30∶0:70∶1:0. Again, a smooth tran-
sition from the DDA solutions to the IGOM results is
noticed.

Figure 5 shows the integrated single-scattering
properties at 12:0 μm wavelength for two aspect ra-
tios. The refractive index at this wavelength is
1:5502þ i0:0916, which means that ellipsoids are
quite absorptive. Similar to the cases shown in Fig. 4,
the results from the DDA converge to those from the
IGOM but more smoothly. The results from the
IGOM are more accurate in those cases having
stronger absorption.

Note that we did not consider the edge effect
contribution in the asymmetry factor computation,
but the asymmetry factor calculated from the DDA
also converges to that from the IGOM. This is due
to the fact that diffraction dominates the scattered

Fig. 4. Integrated single-scattering properties (extinction efficiency, absorption efficiency, single-scattering albedo, and asymmetry
factor) of randomly oriented ellipsoids. The wavelength is 0:66 μm, the complex refractive index is 1:53þ 0:008i, and the aspect ratios
are a∶b∶c ¼ 0:53∶0:71∶1:00 and a∶b∶c ¼ 0:30∶0:70∶1:00 for left and right panels, respectively.
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intensity pattern. The edge effect correction to the
phase function should slightly influence the asym-
metry factor.

B. Phase Matrix

In this section we compare the nonzero phase matrix
elements computed by the DDA method and the
IGOM. We consider two wavelengths corresponding
to weak and strong absorption and two axis ratios
(0:53∶0:71∶1 and 0:30∶0:70∶1:0). The size parameter
is defined in terms of a volume-equivalent sphere
and is assumed to be 30 for all the cases.
In Fig. 6, the wavelength we considered is 0:66 μm,

and the axis ratios are 0:53∶0:71∶1 and
0:30∶0:70∶1:0 for the left and right panels, respec-
tively. The excellent agreement between the phase
functions (P11) from the two methods is found. For
other phase matrix elements, differences are notice-
able. Figures 6(a) and 6(b) are quite different for each
nonzero element. This means that the phase matrix
elements are sensitive to the axis ratios of ellipsoids.
For the P11 element, the phase function in (b) is quite
featureless, whereas the phase function in (a) has
some features.
Figure 7 shows nonzero phase matrix elements at

12 μm wavelength. The axis ratios are also assumed
to be 0:53∶0:71∶1 and 0:30∶0:70∶1:0 for the left and
right panels, respectively. In Fig. 7, the agreement of
the phase function (P11) from the two methods is also
observed. The differences for other elements are still
noticeable; however, the IGOM results turn out to be
better for the case with strong absorption. The fact
that the accuracy of the IGOM is related to the ab-

sorption has also been reported in a previous study
[11]. The curves for P12 from the DDA method and
IGOM agree with each other when θ is larger than
90°. In comparison with weak absorption cases,
the phase matrix elements for 12 μm are quite
smooth without pronounced oscillations. Unlike
Fig. 6, Figs. 7(a) and 7(b) are quite similar. The rea-
son is that, in the strong absorption case, external
reflection and diffraction dominate the scattering
process, and internal reflection and refraction are
quite weak. Therefore, the single-scattering quanti-
ties are not sensitive to the axis ratios, especially,
under random orientation conditions.

C. Comparison Between Simulation and Measurement

To examine the applicability of an ellipsoidal model
to realistic dust particle bulk scattering property si-
mulation, we compare the simulated phase function
with that from laboratory measurement for feldspar
aerosol particles. The full scattering phase matrix
was measured by Volten et al. [5] at wavelengths
0.442 and 0:633 μm. We choose the 0:633 μm case
for the comparison of the simulations of the phase
matrix elements against their experimental counter-
parts. The measured data of the bulk phase matrix
elements are for a scattering angle 5°–173°, and
the phase function (i.e., P11) is normalized to 1 at
30°. Measurements near forward and backward scat-
tering were not carried out due to technical difficul-
ties. The size distributions of feldspar samples
were provided by Volten et al. [5] along with the ef-
fective radii. The effective variance was assumed to
be 1.0. Nousiainen and Vermeulen [52] employed a

Fig. 5. Same as Fig. 4 except that the wavelength is 12 μm. The complex refractive index is 1:5502þ 0:0916i. The aspect ratios are
(a) a∶b∶c ¼ 0:53∶0:71∶1:00 and (b) a∶b∶c ¼ 0:30∶0:70∶1:00.
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lognormal size distribution:

nðrÞ ¼ Ntotffiffiffiffiffiffi
2π

p
lnð10Þ logðσÞr exp

�
−
½logðrÞ − logðRÞ�2

2½logðσÞ�2
�
;

ð38Þ

where R is the mean radius and σ is the geometric
standard deviation, which is specified by fitting
the formula to the measured size distribution. With
R ¼ 0:167 μm and σ ¼ 2:32 in Eq. (38), the effective
radius and variance for the fitted size distribution

Fig. 6. Comparison of the phase matrix of an ellipsoid computed from the IGOM and DDA method at a size parameter of 30. The aspect
ratios are (a) 0:53∶0:71∶1:0 and (b) 0:30∶0:70∶1:0.

Fig. 7. Same as Fig. 6 except the wavelength is 12 μm. The aspect ratios are (a) 0:53∶0:71∶1:0 and (b) 0:30∶0:70∶1:0.
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are 0:98 μm and 1.02, respectively, when r ∈
½0:08; 100� μm.
The measured phase matrix of feldspar particles

was compared with a theoretical simulation based
on spheroidal shapes [52]. It demonstrates that using
spheroids was far superior to using spheres for ap-
proximating nonspherical feldspar particle shapes
in scattering computation. Ellipsoids have one more
degree of freedom and lower symmetry than spher-
oids. Thus, it is expected that ellipsoids offer a better
approximation of realistic irregular particles. To test
this speculation, we first compute the bulk scattering
properties of spheroids from a combination of the
T-matrix simulations [19] and the present IGOM
for the lognormal size distribution in Eq. (38). To
match the experimental data, four sets of aspect ra-
tios (0:4583∶1, 0:6481∶1, 0:5477∶1, and 0:4472∶1)
are assumed for spheroids in the bulk scatter-
ing phase matrix computation via the following
formula:

hPiji ¼
P

4
k¼1 Wk

R
Pk
ijðrÞσkscaðrÞnðrÞdrP

4
k¼1 Wk

R
σkscaðrÞnðrÞdr

; ð39Þ

where Pk
ij is the normalized Pij element for the kth

axis ratio, σk is the corresponding scattering cross
section, and Wk is the corresponding weight. The
best agreement between the theoretical and experi-
mental results is achieved when the weights for the
four aspect ratios are 0.4444, 0.0525, 0.1676,
and 0.3357.

Furthermore, we define volume-equivalent ellip-
soids, and define the c axis of an ellipsoid to be
the same as that of its volume-equivalent spheroid.
However, the lengths of the other two axes of the el-
lipsoid are different, so a triaxial ellipsoid is formed.
We select four sets of aspect ratios, which are given
by a∶b∶c ¼ 0:3∶0:7∶1, 0:6∶0:7∶1, 0:5∶0:6∶1, and
0:4∶0:5∶1. The best agreement between the mea-
surements and theoretical simulations is observed
when the weights are selected as 0.3168, 0.0683,

Fig. 8. (Color online) Comparison of the bulk phase function from laboratory measurement [5] with the present simulations based on
spherical, spheroidal, and ellipsoidal models.
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0.1730, and 0.4420 for aspect ratios a∶b∶c ¼
0:3∶0:7∶1, 0:6∶0:7∶1, 0:5∶0:6∶1, and 0:4∶0:5∶1, re-
spectively. Figure 8 shows the comparison between
the measured phase matrix and the theoretical
simulations based on spherical, spheroidal, and ellip-
soidal shapes. The simulated P11 values are normal-
ized to 1 at scattering angle θs ¼ 30°. It is evident
that the phase matrix elements simulated on the ba-
sis of the ellipsoid model (red lines) agree better with
the measured data than those based on the spheroid
model (blue lines), whereas the sphere model
(dashed black lines) leads to much larger discrepan-
cies, particularly, in backward directions (>90°). The
phase functions (P11) simulated from the spheroid
and ellipsoid models are quite similar. However, in
terms of agreement with the measurements, the el-
lipsoid model is more accurate than the spheroid
model for simulating the other phase matrix ele-
ments associated with polarization, particularly,
in the cases of −P12=P11, P22=P11, P33=P11, and
P44=P11 for scattering angles larger than 90°.
Note that we used only four aspect ratios for spher-

oids and ellipsoids. This case study demonstrates
that the ellipsoid model is better than the spheroid
model for simulating the polarization characteristics
of nonspherical feldspar particles. Selecting an
optimized shape (i.e., aspect ratio) distribution of
ellipsoids in the optical property computation for rea-
listic dust particles deserves further investigation.

6. Conclusions

We studied the scattering properties of randomly or-
iented triaxial ellipsoids with size parameters from
the Rayleigh to geometric-optics regimes. The DDA
is applied to compute small particle scattering prop-
erties. For moderate and large particles, we employ
the IGOM, which is an approximate method based on
the ray-tracing technique. To the best of our knowl-
edge, it is the first time that the edge effect contribu-
tions to both the extinction and absorption
efficiencies for ellipsoids have been studied. The pre-
sent results show that the integrated scattering
properties, such as the extinction efficiency, absorp-
tion efficiency, and asymmetry factor, from the DDA
method smoothly transition to those simulated from
the IGOM when the size parameter increases from
the Rayleigh regime to the geometric-optics regime.
The phase matrix elements from both methods re-
semble each other when size parameters are larger
than 30. Therefore, a complete set of ellipsoidal par-
ticle optical properties can be efficiently calculated
by combining the DDA method and the IGOM,
although the phase matrix from the IGOM for mod-
erate size particles is still in need of improvement. It
should be pointed out that we can also employ the
FDTD, PSTD, and T-matrix methods for small
particles.
In previous studies, spheroid geometry is usually

used as a simple geometry to model the scattering
and radiative properties of rounded aerosol particles.
The advantage of ellipsoid geometry is its lower de-

gree of symmetry. In this study, the applicability of
ellipsoidal shape approximations has been validated
by comparison with theoretical and experimental re-
sults for the bulk scattering matrix associated with
feldspar aerosol particles. It is shown that the
ellipsoid model is better than the spheroid model
for simulating dust particle optical properties, parti-
cularly, their polarization characteristics, realisti-
cally. Since the single-scattering properties of
ellipsoids can be efficiently computed, the ellipsoidal
shape, as a simplified theoretical model for nonsphe-
rical particles, can be useful for modeling the scatter-
ing properties of irregular dustlike particles in the
atmosphere.

Appendix A: Radius of Curvature in Eq. (22)

The equation of the curve of the particle boundary
can be expressed in the incident coordinate system
in terms of the parameter χð0 2πÞ as follows:

x0ðχÞ ¼ �a cosω cos χ þ �b sinω sin χ; ðA1Þ

y0ðχÞ ¼ −�a sinω cos χ þ �b cosω sin χ; ðA2Þ

z0ðχÞ ¼ −EðχÞ=D: ðA3Þ

Since the arc length ds is a scalar that should be the
same in different Cartesian coordinate systems, we
can write

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2sin2χ þ �b2cos2χ

q
dχ: ðA4Þ

At each point p on the edge, the “profile” defined by
van de Hulst [35] is a curve through p that has its
local tangent vector along the incident direction.
With the common tangent vector of the “profile”,
there are many curves on the ellipsoidal surface
whose radii of curvature are different but have the
same normal radius. Consider another incident
light that propagates along the tangent vector of
the edge (different from the tangent vector along
the incident direction). In this case, we can define
an imaginary boundary curve similar to that
described in Subsection 3.A. The radius of normal
curvature of the imaginary boundary can be calcu-
lated, which is the same as the radius of curvature
of the “profile”. For convenience, let the new imagin-
ary incident coordinate system be o ~x ~y~z. The equa-
tion of the imaginary curve can be parameterized
with respect to its ~y component as follows:

~~rð~yÞ ¼ ½~xð~yÞ; ~y;~zð~yÞ�: ðA5Þ

According to the theory of differential geometry, the
radius of curvature at the point P is given by
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R1 ¼
����d~~rd ~y

����3=2=
����d~~rd ~y

×
d2~~r

d~y2

����; ðA6Þ

where the first and second derivatives are expressed
as

d~~rð~yÞ=d~y ¼ ðd~xð~yÞ=d~y; 1; d~zð~yÞ=d~yÞ; ðA7Þ

d2~~rð~yÞ=d~y2 ¼ ðd2~xð~yÞ=d~y2; 0;d2~zð~yÞ=d~y2Þ; ðA8Þ
with

d ~xð~yÞ=d~y ¼ −½~x~Cþ 2~B~y�=½~y~Cþ 2~A~x�; ðA9Þ

d~zð~yÞ=d~y ¼ ½ða2
− b2Þc2 sin �β cos �β sin �θd~xð~yÞ=d~y

ðA10Þ

þ ½a2ðc2 − b2Þ þ c2ðb2 − a2Þ cos2 �β� sin �θ cos �θ�=~D:

ðA11Þ
The relation between �A, �B, �C, �D and �θ, �β are the same
as in Section 1. To obtain the normal radius of cur-
vature, we first define the unit curvature vector τ̂,
which is

τ̂ ¼ γ̂ × α̂; ðA12Þ

α̂ ¼ d~~rð~yÞ=d~y=jd~~rð~yÞ=d~yj; ðA13Þ

γ̂ ¼ ½d~~rð~yÞ=d~y × d2~~rð~yÞ=d~y2�=jd~~rð~yÞ=d~y × d2~~rð~yÞ=d~y2j:
ðA14Þ

Finally, according to Meusnier’s theorem, the radius
of normal curvature is

R ¼ R1=jτ̂ · n̂j; ðA15Þ
where n̂ is the normal direction vector at the tangent
point P. Once we know R, Qedge can be calculated
by using a numerical integration technique (e.g.,
Gaussian quadrature).
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